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Geometry of valley growth
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Although amphitheatre-shaped valley heads can be cut by groundwater flows
emerging from springs, recent geological evidence suggests that other processes may
also produce similar features, thus confounding the interpretations of such valley
heads on Earth and Mars. To better understand the origin of this topographic
form, we combine field observations, laboratory experiments, analysis of a high-
resolution topographic map and mathematical theory to quantitatively characterize a
class of physical phenomena that produce amphitheatre-shaped heads. The resulting
geometric growth equation accurately predicts the shape of decimetre-wide channels in
laboratory experiments, 100 m-wide valleys in Florida and Idaho, and kilometre-wide
valleys on Mars. We find that, whenever the processes shaping a landscape favour the
growth of sharply protruding features, channels develop amphitheatre-shaped heads
with an aspect ratio of .
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1. Introduction

When groundwater emerges from a spring with sufficient intensity to remove
sediment, it carves a valley into the landscape (Dunne 1980). Over time, this
‘seepage erosion’ causes the spring to migrate, resulting in an advancing valley head
with a characteristic rounded form (Lamb et al. 2006). Proposed examples of such
‘seepage channels’ include centimetre-scale rills on beaches and levees (Higgins 1982;
Schorghofer et al. 2004), 100 m-scale valleys on Earth (Russell 1902; Wentworth 1928;
Laity & Malin 1985; Orange, Anderson & Breen 1994; Schumm et al. 1995; Abrams
et al. 2009) and kilometre-scale valleys on Mars (Sharp & Malin 1975; Higgins 1982;
Malin & Carr 1999). Although it has long been thought that the presence of an
amphitheatre-shaped head is diagnostic of seepage erosion (Higgins 1982; Laity &
Malin 1985; Russell 1902), recent work suggests that overland flow can produce
similar features (Lamb et al. 2006, 2008). To address this ambiguity, we seek a general
characterization of processes that produce channels indistinguishable in shape from
seepage channels.

We first identify the the interface dynamics (Ben-Jacob et al. 1983; Brower et al.
1983; Shraiman & Bensimon 1984; Kessler, Koplik & Levine 1985; Pelce 1988,
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FiGURE 1. Examples of seepage valleys from the Florida network. (a) Topography obtained
from a high-resolution map (Abrams et al. 2009) showing the rounded ‘amphitheatre-shaped’
valley head surrounding a spring (red arrow). Colours represent elevation above sea level.
(b) A seepage valley head as viewed from the sidewall. The red arrow shows the approximate
position of the spring. Note people for scale.

2004; Marsili et al. 1996) appropriate for amphitheatre-shaped valley heads formed
by seepage erosion. We then show that the same dynamics apply in a more general
setting. We find that whenever the processes shaping a landscape cause valleys to grow
at a rate proportional to their curvature, they develop amphitheatre-shaped heads
with a precise shape. This result clarifies the controversy surrounding terrestrial and
Martian valleys by showing that many of these features are quantitatively consistent
with a class of dynamics which includes, but is not limited to, seepage erosion.

2. The Florida network

To provide a precise context for our analysis, we first focus on a well-characterized
kilometre-scale network of seepage valleys on the Florida Panhandle (Schumm et al.
1995; Abrams et al. 2009) (figure 1). This network is cut approximately 30 m into
homogeneous, unconsolidated sand (Schumm et al. 1995; Abrams et al. 2009). Because
the mean rainfall rate P is small compared to the hydraulic conductivity of the sand,
nearly all water enters the channel through the subsurface (Schumm et al. 1995;
Abrams et al. 2009). Furthermore, sand grains can be seen moving in streams near
the heads, implying that the water drained by a spring is sufficient to remove sediment
from the head. Finally, a myriad of amphitheatre-shaped valley heads (n > 100) allows
for predictions to be tested in many different conditions.

We begin by finding the equilibrium shape of the water table in the Florida
valley network. This shape describes how water is distributed between different
heads. When the groundwater flux has a small vertical component (relative to the
horizontal components), the Dupuit approximation (Bear 1979) of hydrology relates
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the variations in the height /4 of the water table above an impermeable layer (Schumm
et al. 1995; Abrams et al. 2009) to the mean rainfall rate P and the hydraulic
conductivity K through the Poisson equation

K
EVzhz +P=0. (2.1)

To simplify our analysis, we define two rescaled quantities: the Poisson elevation
¢ =(K/2P)"?h and the Poisson flux g, = |V¢?|. The Poisson elevation is determined
entirely from the shape of the network and, consequently, can be measured from
a map without knowledge of P or K. Physically, g, is the area that is drained by
a small piece of the network per unit arclength. It is, therefore, a local version of
the inverse drainage density (i.e. the basin area divided by total channel length). By
construction, the groundwater flux ¢ = Pg,. This measure of the flux differs from the
geometric drainage area (Abrams et al. 2009) in that it is found from a solution of
the Poisson equation, rather than approximated as the nearest contributing area.

Figure 2(a) shows the solution of (2.1) around the valley network (see supplementary
material available at journals.cambridge.org/flm). Because the variations in the
elevation at which the water table emerges are small (~10 m) relative to the scale
of the network (~1000 m), we approximate the network boundary with an elevation
contour extracted from a high-resolution topographic map (Abrams et al. 2009) on
which ¢ is constant (see supplementary material). For a specified precipitation rate,
this result predicts the flux ¢ of water into each piece of the network.

To test this model of water flow, we compared the solution of (2.1) to
measurements at 82 points in the network. Given a reported mean rainfall rate of
P=5x10"*ms~! (Abrams et al. 2009), we find good agreement between observation
and theory (figure 2b), indicating that (2.1) accurately describes the competition for
groundwater. Additionally, we find that the water table elevation 4 is consistent with a
ground penetrating radar survey (Abrams et al. 2009) of the area (see supplementary
material). To understand how the distribution of groundwater through the network
produces channels with amphitheatre-shaped heads, we proceed to relate the flux of
water into a valley head to the geometry of the head.

3. Relation of flux and geometry

For an arbitrary network, there is no simple relationship between the flux of water
into part of the network and its local shape. As each tip competes with every other
part of the network, one can only find the local flux by solving (2.1). However, as
first identified by Dunne (1980), valleys cut by seepage grow when sections of the
valley which protrude outwards (high positive curvature) draw large fluxes while
indented sections (negative curvature) of the network are shielded by the network.
Motivated by this insight, we seek the relationship between the flux into a piece of a
valley network and its planform curvature. Figure 2(c) shows that this relationship is
consistent with a hyperbolic dependence of the Poisson flux (and hence the water flux)
on the curvature. Consequently, at tips, where the curvature is high, this relationship
can be approximated by the asymptote. Thus,

q, ~ 2k, (3.1)

where §2 is a proportionality constant related to the area drained by a single head.
Thus, we find a local relationship between the processes shaping a seepage valley,
represented by the flux g,, and the local geometry, represented by the curvature k. We
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FiGURE 2. The water table and associated groundwater flux in the Florida network. (a) The
magnitude of the Poisson flux (colour intensity on boundary) is the size of the area draining
into a section of the network per unit length. It is found by solving (2.1) around the channels
as approximated with an elevation contour. Flow lines are in black. The water discharge was
measured at blue circles. The Poisson elevation and Poisson flux are proportional to the water
table height and groundwater flux, respectively. (b) Comparison of the predicted discharge to
measurements at 30 points in network taken in January 2009 (blue points) and 52 points in
April 2009 (red points). The black line indicates equality. This comparison is direct and requires
no adjustable parameters. (c) We observe a hyperbolic relationship between the curvature of
the valley walls and the predicted flux (red curve). In regions of high curvature (i.e. valley
heads) the flux is proportional to curvature (dashed line).
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note that this relation may be further justified by a scaling argument (supplementary
material), but here we merely employ it as an empirical observation.

4. Geometric growth law

In what follows we first ask how the flux—curvature relation (3.1) is manifested
in the shape of a single valley head. To do so we first find the shape of a valley
head that is consistent with the observed proportionality between groundwater flux
and curvature. This derivation relies on three steps. First, (3.1) is converted, with
an additional assumption, into a relationship between the rate at which a valley
grows outward and its planform curvature. Next, we restrict our attention to valley
heads that grow forward without changing shape. This condition imposes a geometric
relationship between growth and orientation. Combining these, we find a relationship
between curvature and orientation that uniquely specifies the shape of a valley growing
forward due to groundwater flow. Finally, we find that our theoretical prediction is
consistent both with valleys cut by seepage and systems in which seepage is doubtful.
This result leads us to conclude that seepage valleys belong to a class of systems
defined by a specific relationship between growth and curvature which includes
seepage erosion as a particular case.

Following past work (Howard 1988; Abrams et al. 2009), we assume that the
amount of sediment removed from the head is proportional to the flux of groundwater
and, thus, by (3.1), 2«. From (3.1), the speed ¢ at which a valley grows outward
is, therefore, proportional to the planform valley curvature «. Setting H equal to
the difference in elevation between the spring and the topography it is incising, the
sediment flux is

Hc = a2k, (4.1)

where « is a proportionality constant with units of velocity. Equation (4.1) states that
the more sharply a valley wall is curved into the drainage basin, the faster it will
grow. The growth of the channel head is, therefore, ‘curvature-driven’ (Brower et al.
1983).

This derivation of (4.1) marks a shift of focus from the mechanics that shape a
seepage valley to the dynamics by which it evolves. Although the specific processes
of groundwater flow and sediment transport have not been addressed explicitly, this
generalization has two advantages. First, (4.1) is purely geometric and can be solved to
provide a quantitative prediction for the shape of a valley head. Equally importantly,
the generality of these dynamics suggests that the class of processes they describe
may extend beyond seepage valleys and thus provide a quantitative prediction for the
evolution of a wider class of channelization phenomena.

5. Shape of a valley head

We restrict our attention to steady-state valley growth. When the channel grows
forward at a speed ¢y without changing shape, the outward growth balances the growth
forward. If 0 is the angle between the normal vector and the direction the channel
is growing (figure 3), then ¢ =c(cosf. Substituting this condition for translational
growth into (4.1) relates the orientation of a point on the channel to the curvature at
that point:

as2
= — 1
cos 6 COHK(G), (5.1)
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FIGURE 3. A balance between curvature-driven growth and translational growth sets the shape
(5.2) of an amphitheatre-shaped valley head (solid black curve). When a curve evolves due
to curvature-driven growth, the normal velocity ¢ is inversely proportional to the radius of
the best-fitting circle at that point. When a curve translates forward, there is a geometric
relationship between the speed at which a point translates ¢y and the speed at which it grows
in the normal direction c¢. This balance produces channels with a well-defined width w and an
aspect ratio of w/r =m.

where «(0) denotes the dependence of curvature on orientation. Solving this equation
(see the Appendix) for the shape of the curve with this property gives (Brower et al.
1983)

y(x) = %log cos <n%> (5.2)

where w =mwa$2/(coH) is the valley width and 6 =nx/w. The planform shape y(x) is
shown in figure 3. A notable feature of this solution is that all geometric aspects of
the channel head are set by the absolute scale of the valley (i.e. the valley width). In
particular, it follows from (5.1) and (5.2) that all seepage channels have a characteristic
aspect ratio
— =T, (5.3)
r
where r is the radius of curvature of the tip (figure 3). By contrast, a semicircular
valley head, in which w =2r, has an aspect ratio of 2.

6. Comparison to observation

To test these predictions, we first compare the shape of elevation contours extracted
from 17 isolated, growing tips in the Florida network to (5.2) and (5.3). As these
valley heads vary in size, a sensible comparison of their shapes requires rescaling each
channel to the same size; we, therefore, non-dimensionalize each curve by its typical
radius w/2. To remove any ambiguity in the position where the width is measured,
w is treated as a parameter and is fit from the shape of each valley head. Figure 4(a)
compares all 17 rescaled channels heads to (5.2). Although each individual valley
head may deviate from the idealization, the average shape of all valley heads fits the
model well.
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FIGURE 4. The shape of valley heads in the field, experiments, on Earth and on Mars
are consistent with curvature-driven growth. (a) The shape of a channel produced by
curvature-driven growth (red line) compared to the relative positions of points (blue dots)
on the edge of valleys from the Florida network (17 elevation contours). (b) Comparison of
the curvature at a point to the orientation (blue dots) of valleys from the Florida network.
The red line is the linear relationship given in (6.1). The black dashed line corresponds to an
ellipse with aspect ratio n. A semicircular head would predict the horizontal line xw =2. (¢—d)
The analogous plots for the experiments (25 elevation contours extracted at 3 min intervals).
(e—f) The analogous plots for three valleys near Box Canyon and Malad Gorge. (g—h) The
analogous plots for 10 Martian ravines.

This correspondence between theory and observation is further demonstrated by
comparing the average curvature at a point to its orientation. We construct the
average shape of the valley head by averaging the rescaled contours along the
arclength. Rewriting (5.1) in terms of the width, we obtain

wKk = TCcosH. (6.1)

Plotting wk as a function of cos 8, we indeed observe this proportionality (figure 4b).
Moreover, the measured slope p =3.07 £0.17 is consistent with the predicted prefactor
p =m. The proportionality relationship holds most clearly at high curvatures, where
the approximation that flux scales with curvature is most accurate. Notably, were
amphitheatre-shaped valley heads semicircular, then figure 4(b) would show the
horizontal line wk (6) = 2. If valley heads were sections of an ellipse with an aspect ratio
of m, the data in figure 4(b) would follow the curve wk(9) = (4 + (1> —4) cos’ 6)*/?/n’.
Viewing the semicircle and ellipse as geometric null hypotheses, we conclude from
visual inspection of figure 4(b) that we can confidently reject them in favour of (5.2).

Seepage channels can also be grown in the laboratory by forcing water through a
sand pile (Howard 1988; Schorghofer et al. 2004; Lobkovsky et al. 2007). Because
these channels grow on the time scale of minutes to hours, one can directly



252 A. P. Petroff and others

observe the development of the channels. Figure 4(c) compares (5.2) to elevation
contours extracted from a previous experiment (Lobkovsky et al. 2007) while the
channel is growing. Once the contours are rescaled and averaged, the curvature
again is proportional to cos6 (figure 4d). The measured proportionality constant
p=3.07+0.13, consistent with p =m.

7. Generalizations

The strong correspondence between (6.1) and the observed shapes of valley heads
suggests that amphitheatre-shaped heads take their form from curvature-driven
growth. Because curvature-driven growth is a simple geometric growth model, it
likely characterizes a class of physical processes (Brower et al. 1983). For example,
when a low-viscosity fluid is pushed slowly into a viscous fluid in two-dimensions,
the diffusing pressure field deforms the intruding fluid into an elongated form as
described by the Saffman—Taylor instability (Saffman & Taylor 1958). When stabilized
by surface tension, the shape of the resulting ‘viscous finger’ is exactly that given in
(5.2) (Bensimon et al. 1986; Combescot et al. 1986). This morphology has also
been related to the shape of dendrites (Mullins & Sekerka 1963; Kessler, Koplik &
Levine 1986) and is a steady-state solution to the deterministic Kardar—Parasi-Zhang
equation (Kardar, Parisi & Zhang 1986).

This generality leads us to conjecture that when the growth of a valley head
responds linearly to a diffusive flux, its dynamics at equilibrium reduce to curvature-
driven growth. Geophysically relevant processes in which the growth may be
dominated by a (possibly nonlinear) diffusive flux include the conduction of heat,
topographic diffusion (Culling 1960), the shallow water equations (Chanson 1999) and
elastic deformation (Landau & Lifshitz 1995). Thus, assuming appropriate boundary
conditions exist, processes such as seasonal thawing, the relaxation of topography,
overland flow and frost heave may produce valleys indistinguishable in planform
shape from seepage channels.

To confirm the wide applicability of the geometric growth model, we proceed to
compare (5.2) and (6.1) to enigmatic valleys on Earth and Mars. The origins of
amphitheatre-shaped heads from the Snake River in Idaho (Russell 1902; Lamb
et al. 2008) and the Martian valleys of Valles Marineris have been the subject of
much debate (Sharp & Malin 1975; Higgins 1982; Malin & Carr 1999; Lamb et al.
2006). Figure 4(e—h) shows that the shape of valley heads in both of these systems
is consistent with (5.2) and (6.1). Averaging the rescaled valleys and comparing the
dimensionless curvature to the orientation, we find p =2.9240.24 and p =3.02+0.21
for the Snake River and Martian features, respectively. Both estimates are consistent
with p=m.

That these valleys are consistent with the predictions of curvature-driven growth
does not necessarily imply that their growth was seepage-driven. We favour instead a
more conservative conclusion: diffusive transport is ubiquitous and, therefore, so too
is the logcosé form.

8. Discussion

We have derived the shape of a valley head (5.2) from an observed relationship
between the curvature of a valley head and the flux it receives (4.1). Two gaps remain in
this derivation which make the appearance of valleys with the log cos 6 form in natural
settings somewhat mysterious. First, how does the intrinsically non-local process of
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subsurface flow reduce to the purely local formulation of curvature-driven growth
at the valley head? Additionally, how do sediment transport and subsurface flow
stabilize the shape of the valley head once it reaches the logcosd form? It is possible
that the asymptotic proportionality between flux and curvature is a feature of Poisson
fields under very general conditions. Similarly, sediment transport may contribute
higher order corrections (Brower et al. 1983) to (4.1) which stabilize the growing
valley head to small perturbations. Below we outline an alternative hypothesis.

An analogy to the classical Saffman—Taylor viscous finger (Saffman & Taylor 1958)
offers some guidance. In steady state, a viscous finger translates forward at a constant
speed and takes the form prescribed by (5.2); the normal velocity at each point is,
therefore, proportional to the curvature. This relationship is, however, not intrinsic
to viscous flows; it is instead a property of the dynamical steady state towards
which the system evolves. It is possible that the appearance of the flux—curvature
relation in geological settings represents a fixed point in the dynamics resulting from
the coupling of topographic diffusion to subsurface flows. Somehow, despite the
complexities of sediment transport and groundwater competition in a highly ramified
network, the steady-state dynamics retain a simple geometric expression common to
many phenomena.

This hypothesis may also explain why the shape of the valley head is stable even
though (4.1) is not. Curvature-driven growth is an appropriate description of the
dynamics shaping a valley head only when it is at equilibrium. To understand the
stability of this shape, one must explicitly couple subsurface flows to the evolution of
the topography.

9. Conclusion

Our results clarify the debate about the origin of amphitheatre-shaped valley heads
by placing them within a class of dynamical phenomena characterized by growth
proportional to curvature. From this qualitative distinction, we obtain a quantitative
prediction: the valley head has a precisely defined shape with an aspect ratio of .
Regardless of the specific mechanical processes that cause a particular valley head to
grow, all valley heads that fall within this dynamical class will look alike.
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